

Implications of climate change adaptation for public finance: A case study for Austria

Birgit Bednar-Friedl, Gabriel Bachner Wegener Center for Climate and Global Change, University of Graz, Austria

ECONADAPT Policy Workshop September 27-28, 2016 Brussels

Research Agenda

- Elicit which climate adaptation cost categories are budgetary significant
- Identify adaptation needs and costs for public authorities in Austria at different governance levels
- Explore adaptation cost dynamics (mid and long term)
- Estimate the macroeconomic effects of public adaptation
- Identify synergies and potential trade-offs between public and private adaptation

Introduction

- Context of national study
 - Long term budget forecast (by Federal Ministry of Finance)
 - Demographic change
 - Climate change

(Mechler et al., 2010)

Methodology

Climate change impacts and adaptation in a national framework

- 12 "impact fields"
 - According to Austria's National Adaptation Strategy
 - Detailed sectoral analyses (bottom-up)
- Consistent scenario definitions
 - Shared Socioeconomic Pathway (SSP) developed for all impact fields
 - Consistent climate scenario(s): Ø 2016-2045 and Ø 2036-2065
- CGE evaluation
 - Feed in results from sectoral analyses (10 impact fields)
- Compare Baseline scenario (no climate change but socioeconomic development) to Climate Change scenario

Climate change impacts in Austria

Ø 2036-2065: GDP -0.15%; welfare -0.48% (relative to Baseline)

^{*} Rest of impact fields: Transport, Manufacturing and Trade, Water Supply and Sanitation, Cities and Urban Green.

Climate change impacts in Austria

Impact Field	Impact chains	% GDP 2050	% Welfare 2050
Agriculture	Changed crop productivity of main crops and	+0.08%	+0.03%
	grassland due to changes in temperature and		
	precipitation		
Forestry	Changed yield in commercial forests (less biomass	-0.08%	-0.10%
	productivity, bark beetle disturbances); reduced		
	protection functionality of protection forests		
Buildings: Heating and Cooling	Increased cooling energy demand in summer,	+0.01%	+0.03%
	decreased heating energy demand in winter		
Electricity	Change in hydro, wind and PV generation potential;	-0.08%	-0.09%
	lower availability of cooling water for		
	thermal/nuclear plants, change in generation mix,		
	reduction in reliability of the electricity system		
Catastrophe Management	Building damages due to riverine flooding	-0.01%	-0.24%
Tourism	Changes in winter and summer tourism demand	-0.06%	-0.07%
Rest		-0.02%	-0.03%
Net effect		-0.15%	-0.48%

Steininger et al. (2016); Bachner et al. (2015)

Climate change adaptation in Austria

Impact Field	Adaptation scenario assumptions Data	
Catastrophe	 protection of all areas against a future 100-year event BASE project 	
Management	 Current adaptation deficit included (Jeuken et al 	
	 Adaptation costs for upgrading dikes 2015) 	
	 Average benefit-cost ratio of 1.74 	
	 Investment volume: 25% of expected annual damage 	

Catastrophe Management

Catastrophe Management

Catastrophe Management

Effectiveness of adaptation: Minimum B-C ratio for net gain

- GDP: positive GDP effect for very low B-C ratio (10%)
- Welfare: positive welfare effect for B-C ratio below 1 (75%)

Forestry

Forestry

Note: Error bars stand for different assumptions on effectiveness and costs (20% to 50% B-C ratio, higher K intensity: +0.05% to +2%)

Tourism

Tourism

Adaptation measures combined

Adaptation measures combined

Effects on public budgets

- Direct expenditure effects of CC impacts:
 - higher public expenditures on
 - Disaster relief payments
 - Reconstruction of public infrastructure (incl. protective forests)
- Direct expenditure effects of CC adaptation:
 - higher public expenditures on
 - Investment in flood protection (dikes)
 - R&D investment for development of new forest tree species
- Indirect effects on government expenditures and revenues:
 - Lower tax base
 - Unemployment benefits
- Public austerity and budgetary rules:
 - Balanced budget
 - (Increase deficit)
 - (Foreign lending)

Adaptation measures combined

Government expenditures

Adaptation measures combined

Government revenues

■ Climate change impacts only ■ With adaptation in flood protection, forestry, tourism

Conclusions

- Adaptation in 3 most important impact fields can reduce
 - 2/3 of relief payments and GDP costs
 - 1/3 of welfare costs
 - almost 1/2 of unemployment
- Public adaptation spending on flood protection, forestry, tourism is highly effective
 - government balance improves, because of lower expenditures on disaster relief and unemployment benefits
 - more room for other government consumption (education, health etc.) which contributes positively to GDP and welfare
- But: results depend on reliability of benefit and cost estimates of adaptation – more research needed

PACINAS website:

http://anpassung.ccca.at/pacinas/

The Cost of Inaction (COIN) Project

Steininger, K., König, M., Bednar-Friedl, B., Kranzl, L., Loibl, W., Prettenthaler, F. (ed.), (2015), Economic Evaluation of Climate Change Impacts: Development of a Cross-Sectoral Framework and Results for Austria. Springer, Berlin.

http://coin.ccca.at

References

- Bachner, G., Bednar-Friedl, B., Nabernegg, N., Steininger, K.W., 2015, Macroeconomic evaluation of climate change in Austria: A comparison across impact fields and total effects. In: Steininger, K.W., König, M., Bednar-Friedl, B., Kranzl, L., Loibl, W., Prettenthaler, F. (Eds.). Economic Evaluation of Climate Change Impacts. Development of a Cross-Sectoral Framework and Results for Austria. Springer, Berlin, 415-440.
- Jeuken, A., Bouwer, L., Burzel, A., Bosello, F., De Cian, E., Garote, L., Iglesias, A., Zandersen, M., Taylor, T., Chiabai, A., Foudi, S., Mendoza Tinoco, D., Guan, D., Harmackova, Z., Capriolo, A., 2016. EU- wide economic evaluation of adaptation to Climate change. BASE Deliverable 6.3.
- Kolström, M., Lindner, M., Vilén, T., Maroschek, M., Seidl, R., Lexer, M.J., Netherer, S., Kremer, A., Delzon, S., Barbati, A., Marchetti, M., Corona, P., 2011. Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry. *Forests* 2, 961–982.
- Schinko, T., Köberl, J., Bednar-Friedl, B., Prettenthaler, F., 2015. Climate Change and the Austrian Tourism sector: Impacts, adaptation and macroeconomic spillover effects. Graz Economic Papers, 2015-05.
- Seidl, R., Rammer, W., Lexer, M.J., 2011. Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. *Canadian Journal of Forest Research* 41, 694–706.
- Steininger, K.W., Bednar-Friedl, B., Formayer, H. König, M., 2016. Consistent economic cross-sectoral climate change impact scenario analysis: Method and application to Austria. Climate Services 1, 39-52.